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Abstract

A brain–computer interface (BCI) is a communication system that takes recorded brain signals
and translates them into real-time actions, in this case movement of a cursor on a computer
screen. This work applied Fitts’ law to the evaluation of performance on a target acquisition
task during sensorimotor rhythm-based BCI training. Fitts’ law, which has been used as a
predictor of movement time in studies of human movement, was used here to determine the
information transfer rate, which was based on target acquisition time and target difficulty. The
information transfer rate was used to make comparisons between control modalities and
subject groups on the same task. Data were analyzed from eight able-bodied and five motor
disabled participants who wore an electrode cap that recorded and translated their
electroencephalogram (EEG) signals into computer cursor movements. Direct comparisons
were made between able-bodied and disabled subjects, and between EEG and joystick cursor
control in able-bodied subjects. Fitts’ law aptly described the relationship between movement
time and index of difficulty for each task movement direction when evaluated separately and
averaged together. This study showed that Fitts’ law can be successfully applied to computer
cursor movement controlled by neural signals.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Brain–computer interfaces (BCIs), which link neural signal-
based commands to computer inputs, have advanced
significantly over the past decade. A BCI is a communication
system that does not depend on the brain’s normal input/output
pathways of peripheral nerves and muscles [24]. Instead,
communication between a computer and the brain is made
by reading and processing neural signals for input control.
This has the ultimate promise of providing functionality and
independence to individuals with severe motor disabilities by
enabling self-modulation of neural signals to control assistive
devices such as computers, wheelchairs or prosthetic limbs,
rather than depending on residual muscle control.

Previous studies have demonstrated that humans can
operate a computer cursor using neural signals from the scalp

(i.e. electroencephalogram or EEG) [12, 24, 26], the surface of
the brain (i.e. electrocorticogram or ECoG) [6, 13] or within
the brain (i.e. local field potentials and action potentials)
[8, 10]. Although the methods vary, cursor control is often
accomplished by training the participant to use motor imagery
to modulate neural signals [6, 13, 25, 26].

The majority of BCI studies involving the use of motor
imagery for computer cursor control have been conducted in
the able-bodied population [15, 16, 26]. Some studies have
included disabled participants [11, 12, 15, 16, 21, 26], but
more are needed. If the intended users of BCI technology are
individuals with motor disabilities, then the ready adaptation
of BCIs for this population is uncertain. Although testing
BCI technology on able-bodied subjects provides a good
starting point, the user–BCI interaction is unlikely to be
exactly the same for disabled individuals. Further, even
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among individuals with disabilities, it is anticipated that the
ability to effectively use a BCI will differ based on the
duration and type of disability. For example, it is unknown if
individuals with different types of motor disabilities engage
the traditional neurocognitive networks involved in motor
imagery. It is also unknown if plasticity occurs over the
course of BCI training which may allow the networks to rewire
or strengthen. Other factors such as mental effort, cognitive
ability and attention span will also play a role in whether
a BCI implementation is successful for a specific BCI user.
Beyond changes in the brain, external factors such as noise
from power wheelchairs, artificial ventilators and other life
support equipment may interfere with neural signal recordings
and limit the communication bandwidth. This study evaluated
a computer-based target acquisition task executed with a BCI
system that measured EEG signals from the scalp in both
able-bodied and disabled participants. The tasks were based
on the Fitts’ law paradigm and subjects used motor imagery to
control the computer cursor movement. Subject performance
on the cursor movement tasks was evaluated using Fitts’ law
to quantify information processing rates.

1.1. Fitts’ law

General background information on Fitts’ law is presented here
as it forms for the basis for the remainder of this paper. Fitts’
law, first proposed in 1954 as a model of human psychomotor
behavior, has become one of the most widely cited and adopted
models from experimental psychology [7]. Fitts’ law is
derived from Shannon’s theorem 17, which was developed
to describe information transfer in electronic communication
systems [7, 19]. The Fitts’ index of difficulty (ID) describes
the relative difficulty of a particular movement used in a task,
and is based on the distance (A) from the starting point to the
target, and the width (W ) of the target (equation (1)) such that
movement time (MT) is a function of ID (equation (2)). The
information transfer rate (bits s−1) is calculated by taking the
reciprocal of the slope, b, in the regression equation:

ID = log2
2A

W
(1)

MT = a + b

[
log2

(
2A

W

)]
= a + b(ID). (2)

Fitts is best known for the reciprocal tapping task, which
involved moving a stylus back and forth between two targets
and is often referred to as the ‘Fitts’ task paradigm’. Tasks in
the original tapping experiment were carried out mainly with
lower arm movements and subjects performed the tasks as
quickly and accurately as possible. The average information
processing rate for all tasks was around 10–12 bits s−1, which
is considered to be the performance capacity of the human
motor system [7]. Although Fitts’ law was originally used
to describe human limb movement, with particular focus on
the hand and arm, it has proved to be a reliable predictor of
MT in psychomotor studies involving a variety of limb and
muscle groups. There is a consistent high correlation between
Fitts’ measure of task difficulty and time required to complete
a movement task [1, 3–5, 9, 17, 23].

Fitts’ law has previously been used for a variety of
computer input devices, including the hand-held mouse,
joystick, touchpad and trackball [3, 5]. Several alternative
computer input devices for people with disabilities have also
been evaluated, including a head-controlled pointer [9, 17],
foot pedal [4], chin stylus [1] and eye tracker [23]. All of
these devices rely on substitution of residual muscle groups
possessing better control than those which are functionally
impaired.

The intent of EEG-based BCI use is to enable control
using only motor imagery, without muscle involvement. We
hypothesize that Fitts’ law may be an effective tool for
comparing BCI subjects, modalities and tasks. A major
difference between Fitts’ law and other tools that have been
used for BCI comparison is the emphasis of time over accuracy.
In order to use Fitts’ law, the task difficulty is controlled and a
minimal level of task accuracy is expected. This will eliminate
some subjects from analysis, but data from the ones that remain
can be used to focus on time as a measure of performance.
In the current study, Fitts’ law was applied to BCI tasks to
determine the relationship between target acquisition time and
ID. The Fitts’ law regression line provided information about
the task information transfer rate and reaction time for each
task, which was then used to make comparisons of subject
groups and cursor control modalities.

2. Methods

2.1. Participants

Participants included disabled and able-bodied volunteers.
Twelve disabled subjects (seven men and five women) aged
27–65 (mean age = 50.4 years) were originally enrolled
in this study (table 1). Inclusion criteria included subject
participation in more than five 1 h sessions and consistent
target acquisition task accuracy exceeding 80%. The data
from five subjects were ultimately used for the analysis based
on satisfying these criteria. Eight able-bodied participants
(five men and three women) aged 19–29 (mean age =
25.7 years), who also participated in another study on EEG-
based BCIs, were recruited for this experiment based on
participation in more than five 1 h sessions and consistent
task accuracy exceeding 90%. The consistent task accuracy is
one of the inclusion criteria because Fitts’ law emphasizes time
over accuracy, which requires a minimal level of accuracy.

All subjects were naı̈ve to the BCI task upon enrollment in
the main study, with the exception of one able-bodied subject
who participated in ECoG-based BCI experiments 1.5 years
prior to commencing participation in the EEG experiments
presented here. The tasks in the prior experiments were
different than those used here, and her performance did not
differ significantly from the subjects who were naı̈ve to BCI
tasks. All participated with informed consent, and this study
was approved by the University of Wisconsin-Madison Health
Sciences Institutional Review Board.

2.2. Experimental hardware and software

Participants donned a 16-channel electrode cap (Electro-
Cap International Inc., Eaton, OH), which measured
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Table 1. Disabled subject demographics.

Description of Duration of Speech affected >5 BCI Fitts’
# disability Gender Age disability (Y/N)a sessions (Y/N) analysis (Y/N)

1 Spinal muscular atrophy (type 2) F 27 Since birth Y Y N
2 Spinal cord injury (level T-10) M 51 8 years N N N
3 Locked-in syndrome M 59 20 years Y Y N
4 Amyotrophic lateral sclerosis M 50 18 years Y Y Y
5 Amyotrophic lateral sclerosis F 46 19 years Y Y Y
6 Spinal cord injury (level C4–5) M 50 9 years N Y N
7 Post-polio F 65 51 years N N N
8 Post-polio M 60 N Y Y
9 Muscular dystrophy (MD) M 54 MD: Since birth Y Y Y

and post-polio Polio: 51 years
10 Cerebral palsy M 47 Since birth Y N N
11 Spinal muscular atrophy (type 2/3) F 49 Since birth N Y Y
12 Spinal muscular atrophy (type 3) F 47 Since birth N Y N

a The degree of speech impairment varied from difficult to understand to no speech at all.

and transmitted their EEG signals to a computer via a
g.USBamp amplifier (Guger Technologies, Graz, Austria) or a
Pentusa amplifier and signal processing system (Tucker-Davis
Technologies, Alachua, FL, USA). There was no difference
in the data recorded between the two amplifiers. The pure tin
electrodes were 9 mm in diameter and the cap configuration
followed the standard 10–20 system for electrode placement
(see [20] for details).

BCI2000, a general-purpose BCI software package
(Wadsworth Center in Albany, NY, USA), was used for these
experiments [18]. BCI2000 uses a standardized data format
for offline analysis. The code for BCI2000 is open-source, and
the program was modified with in-house software routines for
the tasks used in this experiment [18].

2.3. Experimental procedure: screening and parameter
selection

A screening procedure was performed during the first
experimental session to determine the EEG spectral frequency
components of specific electrodes that subjects could self-
modulate by using motor imagery. Subjects imagined different
types of movements (e.g. clenching their hands, tapping their
feet, sticking out their tongue) in response to visual cues
presented on a computer screen. These data were processed in
the frequency domain using autoregressive spectral analysis,
and if a high correlation (r2 > 0.3) was observed between
the power change and an active response time segment, it
was concluded that the subject could use that imagery to self-
modulate the specific signal component.

Based on the analysis, 3–5 Hz bandwidths (e.g. 12–
15 Hz) for specific electrodes were assigned a preferred
direction for cursor movement (e.g. left or right). A specific
electrode, frequency range and weighting factor were used to
control each direction of cursor movement (up, down, left,
right). During each trial, the EEG power spectral content of
the chosen signals was measured continuously, and the signal
magnitude was the independent variable in a linear equation
that controlled cursor motion in real time. For example,
the vertical direction of cursor movement is described by

equation (3) where MV is the vertical cursor movement in
pixels, UV is the amplitude for up direction, DV is the
amplitude for down direction, w is the weight, a is the gain
(slope), and b is the mean control signal for the user’s previous
performance (intercept) [26]:

Mv = av(wUV UV + wDV DV + bV ). (3)

Once the parameters selected from the screening tasks were
established, participants were trained to use motor imagery to
control an onscreen target acquisition task with a computer
cursor. Subjects were initially instructed to use the imagery
that produced the best response during the screening tasks,
but they were allowed to experiment to find the imagery that
worked best for them.

Based on subject performance and screening results,
initial BCI2000 parameters were sometimes changed during
the session to achieve stable task performance. Although small
changes were made as needed, these were minimized in an
attempt to keep parameters relatively constant throughout the
sessions.

2.4. Experimental procedure: target acquisition task

At the start of each trial, a rectangular target appeared on the
screen for a particular ID (figure 1). After 2 s, a circular
‘cursor’ appeared at the center of the screen. The subject was
instructed to use specific types of imagery to control the cursor
movement in each direction. For example, cursor movement
in the horizontal direction was typically accomplished by
instructing subjects to imagine clenching their left or right
hand to make the cursor move left or right, respectively. The
instructions were to move the cursor into the target as quickly
and accurately as possible and dwell within the target for at
least 500 ms. When the center of the cursor moved into the
target, the target changed color to indicate the cursor was inside
the target area and the subject needed to hold it there. After
500 ms, the target flashed and disappeared to indicate a
successful acquisition. The MT for a successful acquisition
was the elapsed time from the cursor’s first appearance
onscreen until the cursor’s center entered the perimeter of the
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Cursor start
position

The goal is to move the
cursor to the target and hold
for a 500 ms dwell time

Subject moves cursor
left or right by
modulating EEG or
ECoG power

W = Target Width

A = Distance from
start position to center
of target

Figure 1. Target acquisition task based on Fitts’ law. The task was
to move the circular cursor to the rectangular target. One target is
shown, but targets of varying indices of difficulty were presented
one at a time on each side of the screen during the task.

target. The 500 ms dwell time was not included in the MT, but
the dwell was necessary for successful target acquisition. This
task varies from traditional BCI target movement tasks where
the cursor touches the target, but does not have to dwell, for
an acquisition.

If the cursor did not come in contact with the target after
15 s, the trial ended. However, if the cursor came in contact
with the target, but did not dwell 500 ms, the timer kept going
until the target was acquired or 15 s elapsed without contacting
the target. There was a 2 s rest period between trials, and
subjects completed as many trials as possible in sets lasting
3 min.

There were seven IDs for the one-dimension (1D) tasks:
0.58, 0.74, 1.14, 1.22, 2.0, 2.59 and 3.70 bits. This
meant there were 28 possible target positions (i.e. seven
each on the top, bottom, left and right sides of the screen),
although the horizontal and vertical dimensions were evaluated
separately because cursor movement for each dimension
required different types of imagery. For example, in a 1D
horizontal task set, targets would appear only on the left or
right side of the screen and cursor movement was constrained
to the horizontal (left–right) direction.

After learning how to control both horizontal (left–right)
and vertical (up–down) cursor movements, these were put
together into an independent orthogonal dimension task where
six of the same seven indices of difficulty (0.58–2.59 bits)
were evaluated, for a total of 24 possible target positions that
appeared randomly in a test set. In this independent orthogonal
dimension task, targets were constrained to horizontal and
vertical locations and did not involve a true 2D movement
where diagonal targets were introduced. However, unless the
subject was able to bring the cursor directly from the start
position to the target (by moving it up, down, left or right),
they did have to combine the motor imagery as described
below.

Finally, subjects who were successful with the
independent orthogonal dimension tasks (>90% accuracy)
advanced to a true two-dimension (2D) task where the

targets could be located diagonally from the cursor start
position. Subjects could acquire targets by simultaneously
or sequentially performing the imagery attributed to each
direction of cursor movement. For example, if a target was
located to the bottom-left corner of the screen, and the subject
used foot movement imagery for downward cursor movement
and left hand clenching imagery for leftward cursor movement,
they could either think about the foot and hand movement
together or sequentially to acquire the target. The 2D task had
eight targets, but only two levels of ID: 1.59 and 1.92 bits.

In addition to the BCI tasks, able-bodied subjects also
performed the task with a hand-held joystick (Logitech Attack
3, Logitech Inc.) in order to make a direct task comparison
between manual and brain-controlled movement.

2.5. Data analysis

The mean MT for each ID was calculated separately for each
1D movement direction (up, down, left or right) and then
averaged across directions. Comparisons were made between
disabled and able-bodied subjects who performed the same
tasks with both brain and joystick control. Group MT means
were calculated and regressed against ID for each condition.
The average predicted MT from the regression analysis was
used as the dependent variable in repeated measures analysis
of variance (ANOVA).

Data from the first session and trials for which parameters
had to be adjusted on subsequent days were excluded from
analysis. Exclusion of these adjustment trials was necessary
because they were typically related to minor changes in
the electrode cap position or signal quality, not subject
performance. MT greater than three standard deviations from
the mean was identified for individual subjects for each ID of
each task. These were considered outliers and excluded from
the analysis.

3. Results

Five motor disabled participants performed the 1D task at
a level sufficient for evaluation with Fitts’ law. Eight able-
bodied participants performed the 1D task, four performed the
independent orthogonal dimension task, and two performed
the 2D task. The relationship between ID and MT for 1D
cursor movement is shown in figures 2 and 3 for disabled
and able-bodied subjects, respectively. The relationship for
independent orthogonal dimension cursor movement is shown
in figure 4. The Fitts’ law regression model averaged across
subjects for each 1D task direction is shown next to each
graph. Note that left and right targets were tested separately
from up and down targets to constrain cursor movement to one
dimension. However, each movement direction was assigned
a unique combination of electrode(s), frequency band(s) and
weighting factor(s) to control cursor movement. Subjects were
instructed to use specific types of imagery for each movement
direction.

In order to test if the Fitts’ law regression lines were
the same for each movement direction, a repeated measures
ANOVA was performed to compare the predicted means
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Figure 2. Relationship between index of difficulty (ID) and
movement time at four target locations (left, right, top or bottom of
the screen) for five motor disabled subjects performing a
one-dimensional BCI cursor movement task at >90% accuracy. A
linear trend line was fit to each dataset, with the equation, r2, and bit
rate shown to the right of the graph.

y = 2.9388x - 0.4934

R2 = 0.9084

y = 2.8381x - 0.1064

R2 = 0.9467

y = 2.6411x + 0.2942

R2 = 0.9041

y = 2.4326x + 0.1782

R2 = 0.938

0

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Index of Difficulty (bits)

M
o

ve
m

en
t 

T
im

e 
(s

)

Left Targets

Right Targets

Up Targets

Down Targets

Up Targets

Down Targets

Left Targets

Right Targets

0.379 bits/s

0.352 bits/s

0.340 bits/s

0.411 bits/s

Figure 3. Relationship between ID and movement time at four
target locations (left, right, top or bottom of the screen) for eight
able-bodied subjects performing a one-dimensional BCI cursor
movement task at >90% accuracy. A linear regression line was fit to
each dataset, with the equation, r2, and bit rate shown to the right of
the graph.

averaged across ID from the least-squares regression analysis
for each movement direction. There were no significant main
effects for 1D task movement direction in disabled [F(3,1) =
2.705, p = 0.414] or able [F(3,5) = 0.635, p = 0.624] subjects
(figures 2 and 3, respectively), or for independent orthogonal
dimension task movement direction in able subjects [F(3,1) =
99.31, p = 0.074] (figure 4).

Since no significant differences were found between the
Fitts’ law regression lines for each movement direction, the
MT at the first six levels of ID was averaged across movement
direction and a pooled regression was plotted in figure 5. The
first six ID levels were used because the 3.70 bit ID was most
commonly missed by subjects in 1D tasks and furthermore
multi-dimensional tasks were carried out only with the first
six levels of ID.
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target locations (left, right, top or bottom of screen) for four
able-bodied subjects performing a independent orthogonal
dimension BCI cursor movement task at >90% accuracy. A linear
regression line was fit to each dataset, with the equation, r2, and bit
rate shown to the right of the graph.
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tasks in disabled and able-bodied subjects. A manual joystick task
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line was fit to each dataset, with the equation, r2, and bit rate shown
to the right of the graph.

After averaging across disabled subjects, the 1D MT
ranged from 3.20 s (SD = 0.84 s) to 7.01 s (SD = 1.14 s)
at the lowest and highest IDs, 0.58 and 2.59, respectively.
The ID did not significantly affect average MT (for the first
five levels of ID since there were not enough subjects to do
the analysis with six levels) [F(4,1) = 2.04, p > 0.05] and the
linear regression of average MT against ID resulted in r2 =
0.83.

After averaging across able-bodied subjects, 1D brain-
controlled MT ranged from 1.78 s (SD = 0.10 s) to 11.21 s
(SD = 1.54 s) at the lowest and highest IDs, respectively. The
ID significantly affected average MT [F(5,3) = 236.76, p <

0.001] and the linear regression of average MT against ID
resulted in r2 = 0.99.

The joystick MT ranged from 0.60 s (SD = 0.11 s) to 1.12 s
(SD = 0.13 s) at the lowest and highest IDs, respectively.
The ID significantly affected average MT [F(5,3) = 54.16,
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Table 2. Average movement time for the 2D brain-controlled task.

Movement direction ID (bits) N a Average MT (s) (SD)

Up 1.59 2 6.42 (2.3)
Down 1.59 2 4.98 (2.14)
Left 1.59 2 4.23 (1.29)
Right 1.59 2 3.73 (0.61)
Up/left 1.92 2 8.25 (6.46)
Up/right 1.92 2 8.61 (0.01)
Down/left 1.92 2 8.43 (0.94)
Down/right 1.92 2 6.7 (2.07)

a N is the number of subjects.

p < 0.01] and the linear regression of average MT against ID
resulted in r2 = 0.96.

The 2D BCI task consisting of eight unique targets was
performed at >80% accuracy by two subjects. There were
only two levels of ID; so a regression line was not fit to the
data. Table 2 shows the mean MT to each of the eight target
locations averaged across subjects. The mean MT averaged
across the up, down, left and right targets was 4.84 s (SD =
1.70 s), while the average MT for the diagonal targets was
7.99 s (SD = 2.71 s).

4. Discussion

In the current study, five of the nine disabled subjects
participating in at least five sessions successfully performed
the BCI tasks by modulating neural signals generated with
motor imagery. Fitts’ law aptly described the relationship
between movement time and ID for each 1D movement
direction when evaluated separately and after averaging
together. There were no significant differences between the
regression lines for the four movement directions even though
different combinations of electrodes and frequency bands were
used corresponding to different types of motor imagery for
each direction. Therefore, not only could these disabled
subjects perform motor imagery, but four unique signals could
be discerned and used for BCI cursor movement.

The difference between the Fitts’ law regression lines
for 1D brain-controlled cursor movement was statistically
significant (p < 0.05); the disabled subjects had a similar
slope (AB: 1.59 s/ bit, D: 1.85 s/bit), but larger y-intercept (AB:
0.94 s, D: 2.49 s). If the y-intercept describes the reaction time
to initiate a task [14], based on previous studies demonstrating
slowing in motor imagery corresponding to the degree of
real movement slowing, it is logical that disabled subjects
in this study had an increased y-intercept. The difference in
regression lines for joystick control by able-bodied subjects
and BCI carried out by both subject groups was statistically
significant (p < 0.05); the bit rate (inverse slope) for joystick
control was also higher than that for brain-controlled tasks
(3.96 bits s−1 compared with 0.54 and 0.63 bits s−1 for AB
and D subjects, respectively). However, for individuals unable
to use a mouse, joystick, or other alternative communication
device, bit rates on the order of 0.6 bits s−1 may be acceptable.
The fact that EEG-based BCI target acquisition tasks can
be carried out by at least some disabled subjects reinforces

the notion that even with non-invasive recording methods,
appropriate neural signals can be generated to represent four
movement directions.

The disabled subjects in this study were not all able to
perform the BCI tasks equally well. One contributing factor
may be the type and duration of disability, which can impact
the ability to effectively execute motor imagery. Ideally,
comparisons would be made between sub-groups of disabled
subjects, but the small sample in this study had a wide range
of disabilities. Even preliminary conclusions cannot be drawn
because the results from this study are mixed. Two low-
performing subjects were affected with their disability since
birth and two were affected for a long duration (9+ years).
However, two high-performing subjects were also affected
since birth and the other three were affected for a long duration
(18+ years). Further investigation with larger numbers of
subjects in each disability category will be necessary to
determine disability related factors that affect performance
and strategies that can be used to improve performance in
each group.

It is also possible that motor disability is unrelated to
whether or not an individual can perform BCI tasks. The able-
bodied group had a similar percentage of subjects (∼50%)
who were considered low performers. Many intrinsic factors
can be considered, including motivation, cognitive ability, past
experience with motor imagery (i.e. related to sports or music),
experience with computers and video games, and day-to-day
variation in mood, fatigue and stress. Age may also play a
role. The mean age of the disabled subjects was 50.4 years,
compared with 25.7 years for the able-bodied subjects. Factors
such as attention span and the ability to learn and adapt to new
tasks may decline with age and affect the ability of a user to
perform brain-controlled tasks.

This study also has implications for enhancing
understanding of brain plasticity and neurocognitive networks
involved when motor imagery is used to control external
devices. Yue and Cole demonstrated that motor imagery
can lead to increases in strength and improvements in real
performance [27]. If there are changes that occur in the brain
with BCI training, there may be implications for rehabilitation
in people with motor disabilities. For example, if BCI
training were to commence shortly after a spinal cord injury
or stroke, the continual use of motor imagery may function to
strengthen and maintain the neurocognitive networks involved
in movement planning and execution. Therefore, it is possible
that BCI training can be used as a tool for rehabilitation while
at the same time allowing the individual to use their neural
signals to substitute for the impaired motor system. Fitts’ law
could be used to evaluate short- and long-term changes in BCI
performance, motor imagery (similar to the Sirigu study [22])
and real movement in individuals with motor disabilities.

Our hypothesis was that Fitts’ law may be an effective
tool for comparing BCI subjects, modalities and tasks. Other
standards for evaluating BCI performance have been proposed
and evaluated (two reviews include [2, 25]). Many are based on
accuracy as a measure of performance for the μ and β rhythm
tasks. The Fitts’ law method takes a different approach in that
it emphasizes time rather than accuracy (with a minimal level
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of task accuracy expected), which can be taken advantage
of to further develop and compare BCI tasks. This study
showed that Fitts’ law can be successfully applied to computer
cursor movement tasks using neural signals, which subjects
modulated using motor imagery. Fitts’ law described the
relationship between movement time and ID for each 1D and
independent orthogonal dimension task movement direction
when evaluated separately and averaged together. It is notable
that even though the imagined movements involved different
actions using different parts of the body (e.g. hand clenching
and foot tapping), Fitts’ law still aptly described the imagined
movements and they were similar across movement directions.
Learning to use a motor imagery to perform BCI tasks may
not be much different than learning to use motor actions to
control handheld devices, such as a joystick or mouse. This
observation can be incorporated into the design and evaluation
of future BCI studies, including the comparison between non-
invasive and invasive modalities.
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